
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

The Journal of Adhesion
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453635

Cohesive-Adhesive Fracture in a Pressurized Double Blister
M. L. Williamsa

a College of Engineering, University of Utah, Salt Lake City, Utah, U.S.A.

To cite this Article Williams, M. L.(1973) 'Cohesive-Adhesive Fracture in a Pressurized Double Blister', The Journal of
Adhesion, 5: 1, 81 — 87
To link to this Article: DOI: 10.1080/00218467308078441
URL: http://dx.doi.org/10.1080/00218467308078441

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453635
http://dx.doi.org/10.1080/00218467308078441
http://www.informaworld.com/terms-and-conditions-of-access.pdf


J .  Adhesion, 1973, Vol. 5. pp. 81-87 
0 1973 Gordon and Breach Science Publishers Ltd 
Printed in Northern Ireland 

Note 
Cohesive-Adhesive Fracture in a 
Pressurized Double Blister 
M. L. WILLIAMS 

College of Engineering. University of Utah, Salt Lake City, Utah 841 72, U.S.A. 

(Received March 9, 1972) 

If two infinite sheets of different elastic properties are bonded together by a n  adhesive 
material of even different elastic properties except for a n  unbonded strip of width 2a into 
which pressure is introduced, adhesive fracture can occur by unbonding between the adhesive 
and either of the two sheets, of cohesive fracture can arise from a n  unstable flaw within the 
adhesive. This paper describes an  approximate analysis through which the critical applied 
pressure and preferred locus of fracture initiation can be estimated as a function of the 
geometrical and mechanical properties of the three layers involved. 

I NTRO D UCTl ON 

In previous papers,’.’ the critical applied pressure, po,,,  to debond a thin 
layer of an incompressible medium from a rigid substrate was calculated 
approximately by utilizing beam theory and the interchange of stored 
strain energy with that required to create new surface area. Two cases 
were considered : (1) the layer cast and bonded directly upon the substrate, 
and (2) the layer pre-cured and bonded to the substrate by an intermediate 
adhesive layer.3 The result for an infinite strip is? 

2(3’($) 2( 33(!5) 
(1) 

- - 2 

16p4 + 56p’ + 84p2 + 6 3 p  + 18 - 1 + 4 ( p )  Po,, = 
1+ 

4p3(1 + p)’ 
7 In Reference 2, Eq. (14) is improperly described as the result for a plate strip. It is 

actually that for a beam strip of unit width. The plate strip solution is derived from the 
beam strip one by replacing E by E/(1 - v*), which latter value for an incompressible 
material is 4Ej3. Replacing E by 4E/3 in that Eq. (14) gives the result in (1) above. 
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82 M. L. WILLIAMS 

i n  which E is the tensile modulus, y ,  is the specific adhesive fracture energy, 
2u is the unbonded length of the strip and h is the strip thickness. The 
parameter p reficcts the correction due to a finite adhesive layer thickness 
(11’)  with material properties (E’, v ’ )  and a foundation, or  spring, modulus 
(kc) in the Winkler sense such that 

/ i  = Au ; 4L4 = k/D ( 2 )  

in which D is the flexural modulus Eh3/l2(I - v 2 )  of the strip. If the layer 
thickness is laterally restrained in its plane (cx = cy = 0), then 

k =  - v’)(E/h’) (one-sided strip) 
(1 - 2 v ’ ) (  1 i- v2)  

(3) 

and for a practical case wherein p is reasonably large, one has the criticality 
relation 

h (1 + v‘)(L - 2 ~ ’ )  E / h  
= z(a)’($)[l- 4;J 3(1 - v’)(l - v’) E’/h‘ 

which illustrates the practical point that the stiffer the adhesive layer, 
k N {I”’ + co, i.e., higher modulus or thinner layer, the higher the fracture 
strength. 

in contrast to 
this pressurized strip which is more difficult to test experinientallv. 

Similar results have been deduced for a circular blister, 

BlMATERlAL STRIP 

I n  many design situations it is desired to bond two niaterials of different 
thickness through an adhesive interlayer and inquire as to the strength of 
the joint. As an illustration of how such an analysis might be conducted, 
consider an extension of the example previously discussed (Figure 1). This 
three-layer medium is assumed to contain a (plain strain) strip flaw of 
extent 20, with the third (bottom) material having its geometry and properties 
denoted by barred quantities. The only change compared to the previous 
configuration is that the adhesive layer thickness is to be denoted by 2h’ so 
that when the strip rigidity above and below the bond layer are the same, 
i.e., E = E ,  etc., then the previous, rigid substrate, solution symmetric about 
its mid-plane is properly recovered. For this three-layer media we would 
write 

k =  (’ - v ’ ) (E’ /h ’ )  (three-layer strip) 
2 ( 1  - 2V’)(l + v ’ )  
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FRACTURE IN A PRESSURIZED DOUBLE BLISTER 83 

E,V,h (Top)  

E I, U I, 2 h '  

E , V , h  (Bot tom) 
- - -  

1-a-I- 
FIGURE 1 Geometry of the three-layer medium. 

It is further assumed that the specific adhesive fracture energies between 
the top layer and adhesive layer (y,), and the bottom layer and adhesive 
layer c?@) have been already determined, probably using a pressurized 
blister test;'s3 furthermore, that the specific cohesive fracture energy in the 
adhesive material ( yc )  has likewise been measured, probably using a (plain 
stress) centrally cracked sheet ~pec imen.~  For the time being, time-tempera- 
ture dependence of the fracture energies and moduli are ignored, and only 
elastic analysis will be conducted. 

Because only deflections normal to the layers are considered in this 
analysis, and particularly because of this assumption with regard to  such 
deformations in the Winkler formulation, the former analysis may be adopted 
essentially in tofo, except to modify the top deflection solution (w) to accom- 
modate the bottom deflection solution (E) and redefining the foundation 
modulus, i.e., using 2h', in order to obtain solutions in the three layers from 
the governing plate equations. 
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84 M. L.  WILLIAMS 

such that after matching the solutions at x = a, one finds 

{[(2p’  + 6p + 3) cos p pa4exp [-A(. - a)] 
w ( x )  = 

12p3(1 + p ) ~  

+ (211’ - 3) sin p] cos Ax + [(2p2 + 614 + 3) sin 11 

- (2p’ - 3) cos p] sin 2x1 (7) 

and a similar expression for W(x) by replacing A, p, and D by their barred 
equivalents 1, p and 0. The normal stress distribution in the interlayer, f ( x ) ,  
is determined from 

f ( x )  = k[W(x) + w(x)] (8) 

Fracture criticality is again deduced from the strain energy stored in the 
system ( U ) ,  which from Clapeyron’s Theorem’ is one-half the work done 
by the applied stresses acting through the equilibrium displacement, viz., 

5 4p3 + 12F’ + 18p + 9‘ +-- 1 + -  
45 D 4 p3(1 + p i  

ADHESIVE FAILURE 

Now the change in work done in creating new surface area, dr, depends 
upon where the new surface area is created. In the previous problem of a 
one-sided strip, i t  was assumed that the fracture initiated simultaneously at 
both ends of the bond. Thus one had 

d r  = 4 2 a y , )  (10) 

In this case where there are four locations of potential unbonding, it might 
appear that the corresponding expression would be 

nr = 4 2 a y a  + 2 ~ 7 ~ 1  (1 1) 

On the other hand, it seems unlikely that fracture would originate simul- 
taneously at  all four corners, especially if the adhesive fracture energies y, 
and are different as they should be at the interface of different material 
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FRACTURE IN A PRESSURIZED DOUBLE BLISTER 85 

combinations. Hence, we choose to use either one, but not both simul- 
taneously, of 

as the fracture energy contribution to balance cfUjdu from (9). It follows of 
course that this decision implies that in the case of identical materials above 
and below the bond, the fracture criterion will be affected. In this situation, 
if the four corners did fail simultaneously, one would deduce 

d r l d a  = 2y, or d r j d a  = 27, (12) 

d r l d n  = 4y,* = 2[2yu*]  

and in the ensuing criticality expressions based on (12) one would have to 
double the fracture energy which is tantamount to increasing the predicted 
fracture stress by 45. This matter must be resolved by experiment but 
considering normal material variations, it seems unlikely that all four of 
these corners would fail at the same instant. 

As a supplementary remark one could object on the bais of consistency 
to using the factor two in (10). Why must this one flaw fail at both its ends 
simultaneously? To some extent the position is indefensible even though 
Griffith? S n e d d ~ n , ~  and Williams8 have adopted simultaneous extension in 
the one-, two- and three-dimensional plate, penny-shape and spherical 
configurations, respectively. To a large extent experimental results seem 
consistent in supporting the dual extension theory. Nevertheless, for the 
adhesive debonding situation, (pending experimental results) four-point 
initiation will be precluded, and leads to conservative criticality predictions 
by equating dU/da = dr/da.  

Continuing the analysis therefore, one finds for debonding at the top 
laver interface. 

j( E2) 
1 

or debonding at the bottom layer interface, 

where 4 ( p )  is defined implicity in ( l ) ,  and the lower of pCr  and p,,,  i.e., pmin, 
give the criticality estimate and location. 

Pmin = minimum [pCr,Pcr] (15) 
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86 M. L. WILLIAMS 

CO H ESlVE FA1 LU RE 

In some situations, however, it may happen that failure will not take place 
at the interface at all, but rather that there will be cohesive failure in the 
adhesive itself. Certainly there is a strong, biaxial stress distribution within 
the adhesive and if a flaw exists within or  at the edge of the adhesive, it 
presumably would initiate the failure in this region preferentially. I t  would 
correspond to relatively high values of the adhesive energy compared to the 
cohesive value. Without attempting to solve for the rather complicated 
cohesive fracture criticality condition in the adhesive at this time, consider 
a simple approximate solution which demonstrates the major feat tires of 
the analysis. 

The approximate stress in the adhesive is given from (8), which, i t  is to 
be emphasized, neglects any shear stress. At the edge of the adhesive, s = a, 
one has 

- 1 $(a) = p ~ ’ [ 2 p 2  + 6’ + 31 + ~ ’ [ 2 p 2  + 6 p  + 31 (16) 
i,(l + PI 3(1 + PI 

Assuming for the moment that this stress is uniformly distributed, instead 
of having its characteristic damped oscillatory behavior, or some other 
averaged value, one may inquire as to the criticality threshold for a flaw in 
the adhesive layer subjected to the (conservative) tensile stress .Nu). For 
example, if there was a small edge crack, of depth c, then we find that it will 
extend when f(a) reaches the (plane strain-incompressible) critical value of 

which depends upon the modulus (E’) and specific cohesive fracture energy 
(y(,’) of the adhesive. 

CONCLUSION 

Cohesive or adhesive failure in the three-layer medium will therefore depend 
upon the relative magnitudes of (13), (14) and (17). Explicitly, cohesive 
failure due to a small edge crack will result if 

2 E’y,’ 

Jj 
< Pmin - 

{3(1 
cw + 6P + 31 

+- [ 2 p 2  + 6 p  + 31 ’ 
3(1 + 

If the inequality is reversed, adhesive failure will occur at pnlin, the lower of 
(13) and (14), which also will indicate the location of the interfacial debonds. 
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